Review Article

Is there a Place for Klotho in Alzheimer’s disease?

Maria Isabel Saiz-Figuerez, Nava E and Galindo MF and Joaquin Jordan*

Published: 29 February, 2024 | Volume 9 - Issue 1 | Pages: 001-010

Alzheimer’s disease, a major healthcare concern, lacks an effective pharmacological therapy to change its irreversible progression. In this work, we present Klotho, a protein associated with aging that is involved in the regulation of numerous physiological processes and is a serious candidate to be a pharmacological target to act on. Klotho’s mRNA has been found in neurons of a variety of brain regions (cortex, hippocampus). The best studied and prominent function of Klotho is as the co-receptor of fibroblast growth factor 23 (FGF23), through which Klotho controls renal phosphate excretion and vitamin D metabolism. Reduced serum levels of Klotho in mice have been associated with a shorter life expectancy and with numerous pathological conditions such as renal disease, vascular calcification, neurodegeneration, and others. Moreover, overexpression of Klotho leads to opposite effects resulting in increased survival rates. In this review we address different signaling pathways in which Klotho is involved in one way or another, focusing on those pathways that could serve as pharmacological targets to modify the evolution of Alzheimer’s disease. We describe how Klotho inhibits signaling cascades involved in cellular senescence, fibrosis, inflammation, and apoptosis all of which are mediated by tumor growth factor β (TGF- β), nuclear factor kappa K (NF- κ B), insulin-like growth factor 1 (IGF-1) or Wnt. We also highlight how Klotho is able to activate anti-inflammatory and antioxidant signaling pathways.  Although there are no drugs that act specifically on Klotho, compounds currently on the market such as hormone-based drugs, pravastatin, losartan, fosinopril, and rapamycin have been shown to increase the expression of this protein and are also discussed.

Read Full Article HTML DOI: 10.29328/journal.jsmt.1001074 Cite this Article Read Full Article PDF


Alzheimer´s disease; Klotho; Neurodegenerative aging; Aβ clearance; FGF23; TGF-β; NF-kB; IGF-1; Wnt; Anti-aging


  1. Avan A, Hachinski V. Global, regional, and national trends of dementia incidence and risk factors, 1990-2019: A Global Burden of Disease study. Alzheimers Dement. 2023 Apr;19(4):1281-1291. doi: 10.1002/alz.12764. Epub 2022 Aug 31. PMID: 36044376.
  2. Javidnia S, Cranwell S, Mueller SH, Selman C, Tullet JMA, Kuchenbaecker K, Alic N. Mendelian randomization analyses implicate biogenesis of translation machinery in human aging. Genome Res. 2022 Feb;32(2):258-265. doi: 10.1101/gr.275636.121. Epub 2022 Jan 25. PMID: 35078808; PMCID: PMC8805714.
  3. Franceschi C, Garagnani P, Morsiani C, Conte M, Santoro A, Grignolio A, Monti D, Capri M, Salvioli S. The Continuum of Aging and Age-Related Diseases: Common Mechanisms but Different Rates. Front Med (Lausanne). 2018 Mar 12;5:61. doi: 10.3389/fmed.2018.00061. PMID: 29662881; PMCID: PMC5890129.
  4. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabeshima YI. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997 Nov 6;390(6655):45-51. doi: 10.1038/36285. PMID: 9363890.
  5. Pan HC, Chou KM, Lee CC, Yang NI, Sun CY. Circulating Klotho levels can predict long-term macrovascular outcomes in type 2 diabetic patients. Atherosclerosis. 2018 Sep;276:83-90. doi: 10.1016/j.atherosclerosis.2018.07.006. Epub 2018 Jul 17. PMID: 30048945.
  6. Matsumura Y, Aizawa H, Shiraki-Iida T, Nagai R, Kuro-o M, Nabeshima Y. Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein. Biochem Biophys Res Commun. 1998 Jan 26;242(3):626-30. doi: 10.1006/bbrc.1997.8019. PMID: 9464267.
  7. Janson L, Pettersson U. Cooperative interactions between transcription factors Sp1 and OTF-1. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4732-6. doi: 10.1073/pnas.87.12.4732. PMID: 2191301; PMCID: PMC54191.
  8. Deary IJ, Harris SE, Fox HC, Hayward C, Wright AF, Starr JM, Whalley LJ. KLOTHO genotype and cognitive ability in childhood and old age in the same individuals. Neurosci Lett. 2005 Apr 11;378(1):22-7. doi: 10.1016/j.neulet.2004.12.005. Epub 2005 Jan 22. PMID: 15763166.
  9. Lindberg K, Amin R, Moe OW, Hu MC, Erben RG, Östman Wernerson A, Lanske B, Olauson H, Larsson TE. The kidney is the principal organ mediating klotho effects. J Am Soc Nephrol. 2014 Oct;25(10):2169-75. doi: 10.1681/ASN.2013111209. Epub 2014 May 22. PMID: 24854271; PMCID: PMC4178446.
  10. Andrukhova O, Zeitz U, Goetz R, Mohammadi M, Lanske B, Erben RG. FGF23 acts directly on renal proximal tubules to induce phosphaturia through activation of the ERK1/2-SGK1 signaling pathway. Bone. 2012 Sep;51(3):621-8. doi: 10.1016/j.bone.2012.05.015. Epub 2012 May 27. PMID: 22647968; PMCID: PMC3419258.
  11. Martín-Núñez E, Pérez-Castro A, Tagua VG, Hernández-Carballo C, Ferri C, Pérez-Delgado N, Rodríguez-Ramos S, Cerro-López P, López-Castillo Á, Delgado-Molinos A, López-Tarruella VC, Arévalo-Gómez MA, González-Luis A, Martín-Olivera A, Morales-Estévez CC, Mora-Fernández C, Donate-Correa J, Navarro-González JF. Klotho expression in peripheral blood circulating cells is associated with vascular and systemic inflammation in atherosclerotic vascular disease. Sci Rep. 2022 May 19;12(1):8422. doi: 10.1038/s41598-022-12548-z. PMID: 35590090; PMCID: PMC9120199.
  12. Cararo-Lopes MM, Mazucanti CHY, Scavone C, Kawamoto EM, Berwick DC. The relevance of α-KLOTHO to the central nervous system: Some key questions. Ageing Res Rev. 2017 Jul;36:137-148. doi: 10.1016/j.arr.2017.03.003. Epub 2017 Mar 18. PMID: 28323064.
  13. Kuro-O M. The Klotho proteins in health and disease. Nat Rev Nephrol. 2019 Jan;15(1):27-44. doi: 10.1038/s41581-018-0078-3. PMID: 30455427.
  14. Martin A, David V, Quarles LD. Regulation and function of the FGF23/klotho endocrine pathways. Physiol Rev. 2012 Jan;92(1):131-55. doi: 10.1152/physrev.00002.2011. PMID: 22298654; PMCID: PMC3306265.
  15. Quarles LD. Role of FGF23 in vitamin D and phosphate metabolism: implications in chronic kidney disease. Exp Cell Res. 2012 May 15;318(9):1040-8. doi: 10.1016/j.yexcr.2012.02.027. Epub 2012 Mar 7. PMID: 22421513; PMCID: PMC3336874.
  16. Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, Kuro-o M. Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem. 2006 Mar 10;281(10):6120-3. doi: 10.1074/jbc.C500457200. Epub 2006 Jan 25. PMID: 16436388; PMCID: PMC2637204.
  17. Shimada T, Mizutani S, Muto T, Yoneya T, Hino R, Takeda S, Takeuchi Y, Fujita T, Fukumoto S, Yamashita T. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci U S A. 2001 May 22;98(11):6500-5. doi: 10.1073/pnas.101545198. Epub 2001 May 8. PMID: 11344269; PMCID: PMC33497.
  18. Goetz R, Ohnishi M, Kir S, Kurosu H, Wang L, Pastor J, Ma J, Gai W, Kuro-o M, Razzaque MS, Mohammadi M. Conversion of a paracrine fibroblast growth factor into an endocrine fibroblast growth factor. J Biol Chem. 2012 Aug 17;287(34):29134-46. doi: 10.1074/jbc.M112.342980. Epub 2012 Jun 25. PMID: 22733815; PMCID: PMC3436551.
  19. Kužmová Z, Kužma M, Gažová A, Kovářová M, Jackuliak P, Killinger Z, Kyselovič J, Payer J. Fibroblast Growth Factor 23 and Klotho Are Associated With Trabecular Bone Score but Not Bone Mineral Density in the Early Stages of Chronic Kidney Disease: Results of the Cross-Sectional Study. Physiol Res. 2021 Nov 30;70(Suppl 1):S43-S51. doi: 10.33549/physiolres.934773. PMID: 34918528; PMCID: PMC8884384.
  20. Mikuła-Pietrasik J, Rutecki S, Książek K. The functional multipotency of transforming growth factor β signaling at the intersection of senescence and cancer. Cell Mol Life Sci. 2022 Mar 19;79(4):196. doi: 10.1007/s00018-022-04236-y. PMID: 35305149.
  21. Tominaga K, Suzuki HI. TGF-β Signaling in Cellular Senescence and Aging-Related Pathology. Int J Mol Sci. 2019 Oct 10;20(20):5002. doi: 10.3390/ijms20205002. PMID: 31658594; PMCID: PMC6834140.
  22. Prud'homme GJ, Kurt M, Wang Q. Pathobiology of the Klotho Antiaging Protein and Therapeutic Considerations. Front Aging. 2022 Jul 12;3:931331. doi: 10.3389/fragi.2022.931331. PMID: 35903083; PMCID: PMC9314780.
  23. Yuan Q, Ren Q, Li L, Tan H, Lu M, Tian Y, Huang L, Zhao B, Fu H, Hou FF, Zhou L, Liu Y. A Klotho-derived peptide protects against kidney fibrosis by targeting TGF-β signaling. Nat Commun. 2022 Jan 21;13(1):438. doi: 10.1038/s41467-022-28096-z. Erratum in: Nat Commun. 2022 Nov 4;13(1):6640. PMID: 35064106; PMCID: PMC8782923.
  24. Navarro-González JF, Donate-Correa J, Muros de Fuentes M, Pérez-Hernández H, Martínez-Sanz R, Mora-Fernández C. Reduced Klotho is associated with the presence and severity of coronary artery disease. Heart. 2014 Jan;100(1):34-40. doi: 10.1136/heartjnl-2013-304746. Epub 2013 Oct 28. PMID: 24165855.
  25. Kenyon C. The plasticity of aging: insights from long-lived mutants. Cell. 2005 Feb 25;120(4):449-60. doi: 10.1016/j.cell.2005.02.002. PMID: 15734678.
  26. Higashi Y, Sukhanov S, Anwar A, Shai SY, Delafontaine P. Aging, atherosclerosis, and IGF-1. J Gerontol A Biol Sci Med Sci. 2012 Jun;67(6):626-39. doi: 10.1093/gerona/gls102. Epub 2012 Apr 5. PMID: 22491965; PMCID: PMC3348497.
  27. Dyer AH, Vahdatpour C, Sanfeliu A, Tropea D. The role of Insulin-Like Growth Factor 1 (IGF-1) in brain development, maturation and neuroplasticity. Neuroscience. 2016 Jun 14;325:89-99. doi: 10.1016/j.neuroscience.2016.03.056. Epub 2016 Mar 31. PMID: 27038749.
  28. Yamamoto M, Clark JD, Pastor JV, Gurnani P, Nandi A, Kurosu H, Miyoshi M, Ogawa Y, Castrillon DH, Rosenblatt KP, Kuro-o M. Regulation of oxidative stress by the anti-aging hormone klotho. J Biol Chem. 2005 Nov 11;280(45):38029-34. doi: 10.1074/jbc.M509039200. Epub 2005 Sep 26. PMID: 16186101; PMCID: PMC2515369.
  29. Liu H, Fergusson MM, Castilho RM, Liu J, Cao L, Chen J, Malide D, Rovira II, Schimel D, Kuo CJ, Gutkind JS, Hwang PM, Finkel T. Augmented Wnt signaling in a mammalian model of accelerated aging. Science. 2007 Aug 10;317(5839):803-6. doi: 10.1126/science.1143578. PMID: 17690294.
  30. Wang Y, Sun Z. Current understanding of klotho. Ageing Res Rev. 2009 Jan;8(1):43-51. doi: 10.1016/j.arr.2008.10.002. Epub 2008 Oct 31. PMID: 19022406; PMCID: PMC2637560.
  31. Lawrence T, Gilroy DW, Colville-Nash PR, Willoughby DA. Possible new role for NF-kappaB in the resolution of inflammation. Nat Med. 2001 Dec;7(12):1291-7. doi: 10.1038/nm1201-1291. PMID: 11726968.
  32. Dinkova-Kostova AT, Kostov RV, Kazantsev AG. The role of Nrf2 signaling in counteracting neurodegenerative diseases. FEBS J. 2018 Oct;285(19):3576-3590. doi: 10.1111/febs.14379. Epub 2018 Jan 29. PMID: 29323772; PMCID: PMC6221096.
  33. Qu Z, Sun J, Zhang W, Yu J, Zhuang C. Transcription factor NRF2 as a promising therapeutic target for Alzheimer's disease. Free Radic Biol Med. 2020 Nov 1;159:87-102. doi: 10.1016/j.freeradbiomed.2020.06.028. Epub 2020 Jul 28. PMID: 32730855.
  34. Panda H, Wen H, Suzuki M, Yamamoto M. Multifaceted Roles of the KEAP1-NRF2 System in Cancer and Inflammatory Disease Milieu. Antioxidants (Basel). 2022 Mar 11;11(3):538. doi: 10.3390/antiox11030538. PMID: 35326187; PMCID: PMC8944524.
  35. Haga M, Okada M. Systems approaches to investigate the role of NF-κB signaling in aging. Biochem J. 2022 Jan 28;479(2):161-183. doi: 10.1042/BCJ20210547. PMID: 35098992; PMCID: PMC8883486.
  36. Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene. 1999 Nov 22;18(49):6853-66. doi: 10.1038/sj.onc.1203239. PMID: 10602461.
  37. Li ZW, Chu W, Hu Y, Delhase M, Deerinck T, Ellisman M, Johnson R, Karin M. The IKKbeta subunit of IkappaB kinase (IKK) is essential for nuclear factor kappaB activation and prevention of apoptosis. J Exp Med. 1999 Jun 7;189(11):1839-45. doi: 10.1084/jem.189.11.1839. PMID: 10359587; PMCID: PMC2193082.
  38. Li L, Wang Y, Gao W, Yuan C, Zhang S, Zhou H, Huang M, Yao X. Klotho Reduction in Alveolar Macrophages Contributes to Cigarette Smoke Extract-induced Inflammation in Chronic Obstructive Pulmonary Disease. J Biol Chem. 2015 Nov 13;290(46):27890-900. doi: 10.1074/jbc.M115.655431. Epub 2015 Sep 18. PMID: 26385922; PMCID: PMC4646031.
  39. Maekawa Y, Ishikawa K, Yasuda O, Oguro R, Hanasaki H, Kida I, Takemura Y, Ohishi M, Katsuya T, Rakugi H. Klotho suppresses TNF-alpha-induced expression of adhesion molecules in the endothelium and attenuates NF-kappaB activation. Endocrine. 2009 Jun;35(3):341-6. doi: 10.1007/s12020-009-9181-3. Epub 2009 Apr 15. PMID: 19367378.
  40. Zhao Y, Banerjee S, Dey N, LeJeune WS, Sarkar PS, Brobey R, Rosenblatt KP, Tilton RG, Choudhary S. Klotho depletion contributes to increased inflammation in kidney of the db/db mouse model of diabetes via RelA (serine)536 phosphorylation. Diabetes. 2011 Jul;60(7):1907-16. doi: 10.2337/db10-1262. Epub 2011 May 18. PMID: 21593200; PMCID: PMC3121423.
  41. Moreno JA, Izquierdo MC, Sanchez-Niño MD, Suárez-Alvarez B, Lopez-Larrea C, Jakubowski A, Blanco J, Ramirez R, Selgas R, Ruiz-Ortega M, Egido J, Ortiz A, Sanz AB. The inflammatory cytokines TWEAK and TNFα reduce renal klotho expression through NFκB. J Am Soc Nephrol. 2011 Jul;22(7):1315-25. doi: 10.1681/ASN.2010101073. Epub 2011 Jun 30. PMID: 21719790; PMCID: PMC3137579.
  42. Lin W, Wu X, Wen J, Fei Y, Wu J, Li X, Zhang Q, Dong Y, Xu T, Fan Y, Wang N. Nicotinamide retains Klotho expression and ameliorates rhabdomyolysis-induced acute kidney injury. Nutrition. 2021 Nov-Dec;91-92:111376. doi: 10.1016/j.nut.2021.111376. Epub 2021 Jun 2. PMID: 34274652.
  43. Zhou HJ, Li H, Shi MQ, Mao XN, Liu DL, Chang YR, Gan YM, Kuang X, Du JR. Protective Effect of Klotho against Ischemic Brain Injury Is Associated with Inhibition of RIG-I/NF-κB Signaling. Front Pharmacol. 2018 Jan 18;8:950. doi: 10.3389/fphar.2017.00950. PMID: 29403373; PMCID: PMC5778393.
  44. Martín-Núñez E, Donate-Correa J, Ferri C, López-Castillo Á, Delgado-Molinos A, Hernández-Carballo C, Pérez-Delgado N, Rodríguez-Ramos S, Cerro-López P, Tagua VG, Mora-Fernández C, Navarro-González JF. Association between serum levels of Klotho and inflammatory cytokines in cardiovascular disease: a case-control study. Aging (Albany NY). 2020 Jan 27;12(2):1952-1964. doi: 10.18632/aging.102734. Epub 2020 Jan 27. PMID: 31986490; PMCID: PMC7053623.
  45. Nie F, Wu D, Du H, Yang X, Yang M, Pang X, Xu Y. Serum klotho protein levels and their correlations with the progression of type 2 diabetes mellitus. J Diabetes Complications. 2017 Mar;31(3):594-598. doi: 10.1016/j.jdiacomp.2016.11.008. Epub 2016 Nov 12. PMID: 27916483.
  46. Qiao Y, Liu F, Peng Y, Wang P, Ma B, Li L, Si C, Wang X, Zhang M, Song F. Association of serum Klotho levels with cancer and cancer mortality: Evidence from National Health and Nutrition Examination Survey. Cancer Med. 2023 Jan;12(2):1922-1934. doi: 10.1002/cam4.5027. Epub 2022 Jul 16. PMID: 35841322; PMCID: PMC9883546.
  47. Grøntvedt GR, Sando SB, Lauridsen C, Bråthen G, White LR, Salvesen Ø, Aarsland D, Hessen E, Fladby T, Waterloo K, Scheffler K. Association of Klotho Protein Levels and KL-VS Heterozygosity With Alzheimer Disease and Amyloid and Tau Burden. JAMA Netw Open. 2022 Nov 1;5(11):e2243232. doi: 10.1001/jamanetworkopen.2022.43232. PMID: 36413367; PMCID: PMC9682425.
  48. Sosa-Pineda B, Chowdhury K, Torres M, Oliver G, Gruss P. The Pax4 gene is essential for differentiation of insulin-producing beta cells in the mammalian pancreas. Nature. 1997 Mar 27;386(6623):399-402. doi: 10.1038/386399a0. PMID: 9121556.
  49. Zhang H, Li Y, Fan Y, Wu J, Zhao B, Guan Y, Chien S, Wang N. Klotho is a target gene of PPAR-gamma. Kidney Int. 2008 Sep;74(6):732-9. doi: 10.1038/ki.2008.244. Epub 2008 Jun 11. PMID: 18547997.
  50. Zhang R, Zheng F. PPAR-gamma and aging: one link through klotho? Kidney Int. 2008 Sep;74(6):702-4. doi: 10.1038/ki.2008.382. PMID: 18756295.
  51. Marsell R, Krajisnik T, Göransson H, Ohlsson C, Ljunggren O, Larsson TE, Jonsson KB. Gene expression analysis of kidneys from transgenic mice expressing fibroblast growth factor-23. Nephrol Dial Transplant. 2008 Mar;23(3):827-33. doi: 10.1093/ndt/gfm672. Epub 2007 Oct 2. PMID: 17911089.
  52. Zhou Q, Lin S, Tang R, Veeraragoo P, Peng W, Wu R. Role of Fosinopril and Valsartan on Klotho Gene Expression Induced by Angiotensin II in Rat Renal Tubular Epithelial Cells. Kidney Blood Press Res. 2010;33(3):186-92. doi: 10.1159/000316703. Epub 2010 Jun 23. PMID: 20571281.
  53. Xu Y, Sun Z. Molecular basis of Klotho: from gene to function in aging. Endocr Rev. 2015 Apr;36(2):174-93. doi: 10.1210/er.2013-1079. Epub 2015 Feb 19. PMID: 25695404; PMCID: PMC4399270.
  54. Hsu SC, Huang SM, Lin SH, Ka SM, Chen A, Shih MF, Hsu YJ. Testosterone increases renal anti-aging klotho gene expression via the androgen receptor-mediated pathway. Biochem J. 2014 Dec 1;464(2):221-9. doi: 10.1042/BJ20140739. PMID: 25163025.
  55. Sárvári M, Kalló I, Hrabovszky E, Solymosi N, Rodolosse A, Vastagh C, Auer H, Liposits Z. Hippocampal Gene Expression Is Highly Responsive to Estradiol Replacement in Middle-Aged Female Rats. Endocrinology. 2015 Jul;156(7):2632-45. doi: 10.1210/en.2015-1109. Epub 2015 Apr 29. PMID: 25924104.
  56. Mizuno I, Takahashi Y, Okimura Y, Kaji H, Chihara K. Upregulation of the klotho gene expression by thyroid hormone and during adipose differentiation in 3T3-L1 adipocytes. Life Sci. 2001 May 18;68(26):2917-23. doi: 10.1016/s0024-3205(01)01092-x. PMID: 11411791.
  57. Chen CD, Podvin S, Gillespie E, Leeman SE, Abraham CR. Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19796-801. doi: 10.1073/pnas.0709805104. Epub 2007 Dec 3. PMID: 18056631; PMCID: PMC2148378.
  58. Lau WL, Leaf EM, Hu MC, Takeno MM, Kuro-o M, Moe OW, Giachelli CM. Vitamin D receptor agonists increase klotho and osteopontin while decreasing aortic calcification in mice with chronic kidney disease fed a high phosphate diet. Kidney Int. 2012 Dec;82(12):1261-70. doi: 10.1038/ki.2012.322. Epub 2012 Aug 29. PMID: 22932118; PMCID: PMC3511664.
  59. Vojinovic J. Vitamin D receptor agonists' anti-inflammatory properties. Ann N Y Acad Sci. 2014 May;1317:47-56. doi: 10.1111/nyas.12429. Epub 2014 Apr 22. PMID: 24754474.
  60. Adorini L, Penna G, Fibbi B, Maggi M. Vitamin D receptor agonists target static, dynamic, and inflammatory components of benign prostatic hyperplasia. Ann N Y Acad Sci. 2010 Apr;1193:146-52. doi: 10.1111/j.1749-6632.2009.05299.x. PMID: 20398021.
  61. Mitani H, Ishizaka N, Aizawa T, Ohno M, Usui S, Suzuki T, Amaki T, Mori I, Nakamura Y, Sato M, Nangaku M, Hirata Y, Nagai R. In vivo klotho gene transfer ameliorates angiotensin II-induced renal damage. Hypertension. 2002 Apr;39(4):838-43. doi: 10.1161/01.hyp.0000013734.33441.ea. PMID: 11967236.
  62. Yoon HE, Ghee JY, Piao S, Song JH, Han DH, Kim S, Ohashi N, Kobori H, Kuro-o M, Yang CW. Angiotensin II blockade upregulates the expression of Klotho, the anti-ageing gene, in an experimental model of chronic cyclosporine nephropathy. Nephrol Dial Transplant. 2011 Mar;26(3):800-13. doi: 10.1093/ndt/gfq537. Epub 2010 Sep 2. PMID: 20813770; PMCID: PMC3108350.
  63. Mitobe M, Yoshida T, Sugiura H, Shirota S, Tsuchiya K, Nihei H. Oxidative stress decreases klotho expression in a mouse kidney cell line. Nephron Exp Nephrol. 2005;101(2):e67-74. doi: 10.1159/000086500. Epub 2005 Jun 21. PMID: 15976510.
  64. Piao SG, Kang SH, Lim SW, Chung BH, Doh KC, Heo SB, Jin L, Li C, Yang CW. Influence of N-acetylcysteine on Klotho expression and its signaling pathway in experimental model of chronic cyclosporine nephropathy in mice. Transplantation. 2013 Jul 27;96(2):146-53. doi: 10.1097/TP.0b013e318296c9a9. PMID: 23765110.
  65. Jaturakan O, Buranakarl C, Dissayabutra T, Chaiyabutr N, Kijtawornrat A, Rungsipipat A. Changes of Klotho protein and Klotho mRNA expression in a hydroxy-L-proline induced hyperoxaluric rat model. J Vet Med Sci. 2017 Nov 17;79(11):1861-1869. doi: 10.1292/jvms.17-0340. Epub 2017 Sep 23. PMID: 28943597; PMCID: PMC5709566.
  66. Rui Y, Li S, Luan F, Li D, Liu R, Zeng N. Several Alkaloids in Chinese Herbal Medicine Exert Protection in Acute Kidney Injury: Focus on Mechanism and Target Analysis. Oxid Med Cell Longev. 2022 May 13;2022:2427802. doi: 10.1155/2022/2427802. PMID: 35602100; PMCID: PMC9122709.
  67. Li H, Chen W, Chen Y, Zhou Q, Xiao P, Tang R, Xue J. Neferine Attenuates Acute Kidney Injury by Inhibiting NF-κB Signaling and Upregulating Klotho Expression. Front Pharmacol. 2019 Oct 15;10:1197. doi: 10.3389/fphar.2019.01197. PMID: 31680971; PMCID: PMC6804424.
  68. Mansouri A, Reiner Ž, Ruscica M, Tedeschi-Reiner E, Radbakhsh S, Bagheri Ekta M, Sahebkar A. Antioxidant Effects of Statins by Modulating Nrf2 and Nrf2/HO-1 Signaling in Different Diseases. J Clin Med. 2022 Feb 27;11(5):1313. doi: 10.3390/jcm11051313. PMID: 35268403; PMCID: PMC8911353.
  69. Yamashita T, Yoshioka M, Itoh N. Identification of a novel fibroblast growth factor, FGF-23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem Biophys Res Commun. 2000 Oct 22;277(2):494-8. doi: 10.1006/bbrc.2000.3696. PMID: 11032749.
  70. Zhao Y, Zhao MM, Cai Y, Zheng MF, Sun WL, Zhang SY, Kong W, Gu J, Wang X, Xu MJ. Mammalian target of rapamycin signaling inhibition ameliorates vascular calcification via Klotho upregulation. Kidney Int. 2015 Oct;88(4):711-21. doi: 10.1038/ki.2015.160. Epub 2015 Jun 10. PMID: 26061549.
  71. Zhu Y, Cao X, Zhang X, Chen Q, Wen L, Wang P. DNA methylation-mediated Klotho silencing is an independent prognostic biomarker of head and neck squamous carcinoma. Cancer Manag Res. 2019 Feb 12;11:1383-1390. doi: 10.2147/CMAR.S188415. PMID: 30863149; PMCID: PMC6388988.
  72. Nakao VW, Mazucanti CHY, de Sá Lima L, de Mello PS, de Souza Port's NM, Kinoshita PF, Leite JA, Kawamoto EM, Scavone C. Neuroprotective action of α-Klotho against LPS-activated glia conditioned medium in primary neuronal culture. Sci Rep. 2022 Nov 7;12(1):18884. doi: 10.1038/s41598-022-21132-4. PMID: 36344527; PMCID: PMC9640694.
  73. Zeldich E, Chen CD, Colvin TA, Bove-Fenderson EA, Liang J, Tucker Zhou TB, Harris DA, Abraham CR. The neuroprotective effect of Klotho is mediated via regulation of members of the redox system. J Biol Chem. 2014 Aug 29;289(35):24700-15. doi: 10.1074/jbc.M114.567321. Epub 2014 Jul 18. PMID: 25037225; PMCID: PMC4148892.
  74. Torbus-Paluszczak M, Bartman W, Adamczyk-Sowa M. Klotho protein in neurodegenerative disorders. Neurol Sci. 2018 Oct;39(10):1677-1682. doi: 10.1007/s10072-018-3496-x. Epub 2018 Jul 30. PMID: 30062646; PMCID: PMC6154120.
  75. Abraham CR, Mullen PC, Tucker-Zhou T, Chen CD, Zeldich E. Klotho Is a Neuroprotective and Cognition-Enhancing Protein. Vitam Horm. 2016;101:215-38. doi: 10.1016/bs.vh.2016.02.004. Epub 2016 Mar 22. PMID: 27125744.
  76. Shiozaki M, Yoshimura K, Shibata M, Koike M, Matsuura N, Uchiyama Y, Gotow T. Morphological and biochemical signs of age-related neurodegenerative changes in klotho mutant mice. Neuroscience. 2008 Apr 9;152(4):924-41. doi: 10.1016/j.neuroscience.2008.01.032. Epub 2008 Feb 5. PMID: 18343589.
  77. Duce JA, Podvin S, Hollander W, Kipling D, Rosene DL, Abraham CR. Gene profile analysis implicates Klotho as an important contributor to aging changes in brain white matter of the rhesus monkey. Glia. 2008 Jan 1;56(1):106-17. doi: 10.1002/glia.20593. PMID: 17963266.
  78. Dubal DB, Zhu L, Sanchez PE, Worden K, Broestl L, Johnson E, Ho K, Yu GQ, Kim D, Betourne A, Kuro-O M, Masliah E, Abraham CR, Mucke L. Life extension factor klotho prevents mortality and enhances cognition in hAPP transgenic mice. J Neurosci. 2015 Feb 11;35(6):2358-71. doi: 10.1523/JNEUROSCI.5791-12.2015. PMID: 25673831; PMCID: PMC4323521.
  79. Erickson CM, Schultz SA, Oh JM, Darst BF, Ma Y, Norton D, Betthauser T, Gallagher CL, Carlsson CM, Bendlin BB, Asthana S, Hermann BP, Sager MA, Blennow K, Zetterberg H, Engelman CD, Christian BT, Johnson SC, Dubal DB, Okonkwo OC. KLOTHOheterozygosity attenuates APOE4-related amyloid burden in preclinical AD. Neurology. 2019 Apr 16;92(16):e1878-e1889. doi: 10.1212/WNL.0000000000007323. Epub 2019 Mar 13. PMID: 30867273; PMCID: PMC6550504.
  80. Semba RD, Moghekar AR, Hu J, Sun K, Turner R, Ferrucci L, O'Brien R. Klotho in the cerebrospinal fluid of adults with and without Alzheimer's disease. Neurosci Lett. 2014 Jan 13;558:37-40. doi: 10.1016/j.neulet.2013.10.058. Epub 2013 Nov 7. PMID: 24211693; PMCID: PMC4037850.
  81. Nixon RA. The aging lysosome: An essential catalyst for late-onset neurodegenerative diseases. Biochim Biophys Acta Proteins Proteom. 2020 Sep;1868(9):140443. doi: 10.1016/j.bbapap.2020.140443. Epub 2020 May 13. PMID: 32416272; PMCID: PMC7388076.
  82. Fernández ÁF, Sebti S, Wei Y, Zou Z, Shi M, McMillan KL, He C, Ting T, Liu Y, Chiang WC, Marciano DK, Schiattarella GG, Bhagat G, Moe OW, Hu MC, Levine B. Disruption of the beclin 1-BCL2 autophagy regulatory complex promotes longevity in mice. Nature. 2018 Jun;558(7708):136-140. doi: 10.1038/s41586-018-0162-7. Epub 2018 May 30. Erratum in: Nature. 2018 Sep;561(7723):E30. PMID: 29849149; PMCID: PMC5992097.
  83. Zhang Q, Yin S, Liu L, Liu Z, Cao W. Rhein reversal of DNA hypermethylation-associated Klotho suppression ameliorates renal fibrosis in mice. Sci Rep. 2016 Oct 5;6:34597. doi: 10.1038/srep34597. PMID: 27703201; PMCID: PMC5050540.
  84. Kaltschmidt B, Kaltschmidt C. NF-kappaB in the nervous system. Cold Spring Harb Perspect Biol. 2009 Sep;1(3):a001271. doi: 10.1101/cshperspect.a001271. Erratum in: Cold Spring Harb Perspect Biol. 2010 Jan;2(1):a001271. PMID: 20066105; PMCID: PMC2773634.
  85. Christian F, Smith EL, Carmody RJ. The Regulation of NF-κB Subunits by Phosphorylation. Cells. 2016 Mar 18;5(1):12. doi: 10.3390/cells5010012. PMID: 26999213; PMCID: PMC4810097.
  86. Brennan S, Keon M, Liu B, Su Z, Saksena NK. Panoramic Visualization of Circulating MicroRNAs Across Neurodegenerative Diseases in Humans. Mol Neurobiol. 2019 Nov;56(11):7380-7407. doi: 10.1007/s12035-019-1615-1. Epub 2019 Apr 29. PMID: 31037649; PMCID: PMC6815273.
  87. Juźwik CA, S Drake S, Zhang Y, Paradis-Isler N, Sylvester A, Amar-Zifkin A, Douglas C, Morquette B, Moore CS, Fournier AE. microRNA dysregulation in neurodegenerative diseases: A systematic review. Prog Neurobiol. 2019 Nov;182:101664. doi: 10.1016/j.pneurobio.2019.101664. Epub 2019 Jul 26. PMID: 31356849.
  88. Yoon S, Kim SE, Ko Y, Jeong GH, Lee KH, Lee J, Solmi M, Jacob L, Smith L, Stickley A, Carvalho AF, Dragioti E, Kronbichler A, Koyanagi A, Hong SH, Thompson T, Oh H, Salazar de Pablo G, Radua J, Shin JI, Fusar-Poli P. Differential expression of MicroRNAs in Alzheimer's disease: a systematic review and meta-analysis. Mol Psychiatry. 2022 May;27(5):2405-2413. doi: 10.1038/s41380-022-01476-z. Epub 2022 Mar 9. Erratum in: Mol Psychiatry. 2022 Apr 8;: PMID: 35264731.
  89. Jauhari A, Singh T, Mishra S, Shankar J, Yadav S. Coordinated Action of miR-146a and Parkin Gene Regulate Rotenone-induced Neurodegeneration. Toxicol Sci. 2020 Aug 1;176(2):433-445. doi: 10.1093/toxsci/kfaa066. PMID: 32392329.
  90. Alexandrov P, Zhai Y, Li W, Lukiw W. Lipopolysaccharide-stimulated, NF-kB-, miRNA-146a- and miRNA-155-mediated molecular-genetic communication between the human gastrointestinal tract microbiome and the brain. Folia Neuropathol. 2019;57(3):211-219. doi: 10.5114/fn.2019.88449. PMID: 31588707.
  91. Salim S. Oxidative Stress and the Central Nervous System. J Pharmacol Exp Ther. 2017 Jan;360(1):201-205. doi: 10.1124/jpet.116.237503. Epub 2016 Oct 17. PMID: 27754930; PMCID: PMC5193071.
  92. Xing L, Guo H, Meng S, Zhu B, Fang J, Huang J, Chen J, Wang Y, Wang L, Yao X, Wang H. Klotho ameliorates diabetic nephropathy by activating Nrf2 signaling pathway in podocytes. Biochem Biophys Res Commun. 2021 Jan 1;534:450-456. doi: 10.1016/j.bbrc.2020.11.061. Epub 2020 Nov 27. PMID: 33256980.
  93. Xiang T, Luo X, Ye L, Huang H, Wu Y. Klotho alleviates NLRP3 inflammasome-mediated neuroinflammation in a temporal lobe epilepsy rat model by activating the Nrf2 signaling pathway. Epilepsy Behav. 2022 Mar;128:108509. doi: 10.1016/j.yebeh.2021.108509. Epub 2022 Jan 29. PMID: 35104732.
  94. de Tredern E, Rabah Y, Pasquer L, Minatchy J, Plaçais PY, Preat T. Glial glucose fuels the neuronal pentose phosphate pathway for long-term memory. Cell Rep. 2021 Aug 24;36(8):109620. doi: 10.1016/j.celrep.2021.109620. PMID: 34433052; PMCID: PMC8411112.
  95. Naganos S, Horiuchi J, Saitoe M. Mutations in the Drosophila insulin receptor substrate, CHICO, impair olfactory associative learning. Neurosci Res. 2012 May;73(1):49-55. doi: 10.1016/j.neures.2012.02.001. Epub 2012 Feb 10. PMID: 22342328.
  96. Ferrario CR, Reagan LP. Insulin-mediated synaptic plasticity in the CNS: Anatomical, functional and temporal contexts. Neuropharmacology. 2018 Jul 1;136(Pt B):182-191. doi: 10.1016/j.neuropharm.2017.12.001. Epub 2017 Dec 5. PMID: 29217283; PMCID: PMC5988909.
  97. Carro E, Trejo JL, Spuch C, Bohl D, Heard JM, Torres-Aleman I. Blockade of the insulin-like growth factor I receptor in the choroid plexus originates Alzheimer's-like neuropathology in rodents: new cues into the human disease? Neurobiol Aging. 2006 Nov;27(11):1618-31. doi: 10.1016/j.neurobiolaging.2005.09.039. Epub 2005 Nov 7. PMID: 16274856.
  98. Briona LK, Poulain FE, Mosimann C, Dorsky RI. Wnt/ß-catenin signaling is required for radial glial neurogenesis following spinal cord injury. Dev Biol. 2015 Jul 1;403(1):15-21. doi: 10.1016/j.ydbio.2015.03.025. Epub 2015 Apr 14. PMID: 25888075; PMCID: PMC4469497.
  99. Marchetti B. Wnt/β-Catenin Signaling Pathway Governs a Full Program for Dopaminergic Neuron Survival, Neurorescue and Regeneration in the MPTP Mouse Model of Parkinson's Disease. Int J Mol Sci. 2018 Nov 24;19(12):3743. doi: 10.3390/ijms19123743. PMID: 30477246; PMCID: PMC6321180.
  100. Wexler EM, Paucer A, Kornblum HI, Palmer TD, Geschwind DH. Endogenous Wnt signaling maintains neural progenitor cell potency. Stem Cells. 2009 May;27(5):1130-41. doi: 10.1002/stem.36. Erratum in: Stem Cells. 2009 Oct;27(10):2636. Plamer, Theodore D [corrected to Palmer, Theodore D]. PMID: 19418460; PMCID: PMC2782960.
  101. Inestrosa NC, Tapia-Rojas C, Cerpa W, Cisternas P, Zolezzi JM. WNT Signaling Is a Key Player in Alzheimer's Disease. Handb Exp Pharmacol. 2021;269:357-382. doi: 10.1007/164_2021_532. PMID: 34486097.
  102. Inestrosa NC, Arenas E. Emerging roles of Wnts in the adult nervous system. Nat Rev Neurosci. 2010 Feb;11(2):77-86. doi: 10.1038/nrn2755. Epub 2009 Dec 16. PMID: 20010950.
  103. Budnik V, Salinas PC. Wnt signaling during synaptic development and plasticity. Curr Opin Neurobiol. 2011 Feb;21(1):151-9. doi: 10.1016/j.conb.2010.12.002. Epub 2011 Jan 14. PMID: 21239163; PMCID: PMC3499977.
  104. Nusse R, Clevers H. Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell. 2017 Jun 1;169(6):985-999. doi: 10.1016/j.cell.2017.05.016. PMID: 28575679.
  105. Tan CW, Gardiner BS, Hirokawa Y, Smith DW, Burgess AW. Analysis of Wnt signaling β-catenin spatial dynamics in HEK293T cells. BMC Syst Biol. 2014 Apr 8;8:44. doi: 10.1186/1752-0509-8-44. PMID: 24712863; PMCID: PMC4108056.
  106. Hayat R, Manzoor M, Hussain A. Wnt signaling pathway: A comprehensive review. Cell Biol Int. 2022 Jun;46(6):863-877. doi: 10.1002/cbin.11797. Epub 2022 Apr 6. PMID: 35297539.
  107. Rim EY, Clevers H, Nusse R. The Wnt Pathway: From Signaling Mechanisms to Synthetic Modulators. Annu Rev Biochem. 2022 Jun 21;91:571-598. doi: 10.1146/annurev-biochem-040320-103615. Epub 2022 Mar 18. PMID: 35303793.
  108. Tapia-Rojas C, Inestrosa NC. Wnt signaling loss accelerates the appearance of neuropathological hallmarks of Alzheimer's disease in J20-APP transgenic and wild-type mice. J Neurochem. 2018 Feb;144(4):443-465. doi: 10.1111/jnc.14278. Epub 2018 Jan 26. PMID: 29240990.
  109. Bian A, Neyra JA, Zhan M, Hu MC. Klotho, stem cells, and aging. Clin Interv Aging. 2015 Aug 4;10:1233-43. doi: 10.2147/CIA.S84978. PMID: 26346243; PMCID: PMC4531025.
  110. Wright CB, Shah NH, Mendez AJ, DeRosa JT, Yoshita M, Elkind MS, Sacco RL, DeCarli C, Rundek T, Silverberg S, Dong C, Wolf M. Fibroblast Growth Factor 23 Is Associated With Subclinical Cerebrovascular Damage: The Northern Manhattan Study. Stroke. 2016 Apr;47(4):923-8. doi: 10.1161/STROKEAHA.115.012379. Epub 2016 Mar 8. PMID: 26956260; PMCID: PMC4811730.
  111. Drew DA, Tighiouart H, Scott TM, Lou KV, Fan L, Shaffi K, Weiner DE, Sarnak MJ. FGF-23 and cognitive performance in hemodialysis patients. Hemodial Int. 2014 Jan;18(1):78-86. doi: 10.1111/hdi.12100. Epub 2013 Oct 24. PMID: 24164913; PMCID: PMC4443906.


Similar Articles

  • Is there a Place for Klotho in Alzheimer’s disease?
    Maria Isabel Saiz-Figuerez, Nava E and Galindo MF and Joaquin Jordan* Maria Isabel Saiz-Figuerez, Nava E, Galindo MF and Joaquin Jordan*. Is there a Place for Klotho in Alzheimer’s disease?. . 2024 doi: 10.29328/journal.jsmt.1001074; 9: 001-010

Recently Viewed

Read More

Most Viewed

Read More

Help ?