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Introduction
When Aloise Alzheimer irst described, back in the early 

20th century, the anatomopathological abnormalities of 
Auguste Deter’s brain, he was unaware that he was opening 
the doors to the ield of clinical research on dementias: a family 
of diseases, in addition to Alzheimer’s Disease (AD) itself, 
that includes others such as vascular dementia, Lewy body 
dementia, and frontotemporal dementia. The total number of 
new cases of dementia worldwide is increasing year by year. 
For example, between 1990 and 2019, AD prevalence rose 
from 2.9 million to 7.2 million, an increase of 147.7%, and is 
expected to affect more than 150 million people by 2050 [1].

Unfortunately, we currently have no effective 
pharmacological therapy capable of reversing the undesirable 
and irreversible evolution of AD. Possibly, the main cause 
of this failure is that, in many cases, AD is diagnosed in late 

Abstract 

Alzheimer’s disease, a major healthcare concern, lacks an effective pharmacological therapy to 
change its irreversible progression. In this work, we present Klotho, a protein associated with aging 
that is involved in the regulation of numerous physiological processes and is a serious candidate 
to be a pharmacological target to act on. Klotho’s mRNA has been found in neurons of a variety of 
brain regions (cortex, hippocampus). The best studied and prominent function of Klotho is as the 
co-receptor of ibroblast growth factor 23 (FGF23), through which Klotho controls renal phosphate 
excretion and vitamin D metabolism. Reduced serum levels of Klotho in mice have been associated 
with a shorter life expectancy and with numerous pathological conditions such as renal disease, 
vascular calci ication, neurodegeneration, and others. Moreover, overexpression of Klotho leads to 
opposite effects resulting in increased survival rates. In this review we address different signaling 
pathways in which Klotho is involved in one way or another, focusing on those pathways that could 
serve as pharmacological targets to modify the evolution of Alzheimer’s disease. We describe how 
Klotho inhibits signaling cascades involved in cellular senescence, ibrosis, in lammation, and 
apoptosis all of which are mediated by tumor growth factor β (TGF- β), nuclear factor kappa K (NF- κ B),
insulin-like growth factor 1 (IGF-1) or Wnt. We also highlight how Klotho is able to activate anti-
in lammatory and antioxidant signaling pathways.  Although there are no drugs that act speci ically 
on Klotho, compounds currently on the market such as hormone-based drugs, pravastatin, losartan, 
fosinopril, and rapamycin have been shown to increase the expression of this protein and are also 
discussed.

stages, when the potential for improvement is very small. AD 
can be broadly classi ied into two major classes: familial and 
sporadic AD. The familial form is associated with mutations 
in three genes: Amyloid Precursor Protein (APP), presenilin 
1, and presenilin 2. On the other hand, the sporadic late-
onset form has been related to environmental factors such 
as the presence of heavy metals (e.g. lead, manganese, and 
cadmium), and other metals like aluminum and smoking. 
In addition to this, there are numerous genetic factors such 
as the Apolipoprotein E (APOE) gene and its gene variants 
Epigenetic mechanisms are also involved. Nevertheless, it is 
clear that the most important factor associated with sporadic 
AD is aging. 

Aging, like all multifactorial physiological processes, is 
genetically regulated [2] and is characterized by disorders, 
often irreversible, of different tissues and organs [3] causing 
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physiological dysfunctions that can lead to a state of disease. 
Different transcription factors and proteins have been 
associated with the programming machinery of aging such as 
p53, telomerase, and Klotho.

Klotho is a beta-glucosidase implicated in the control of 
autacoid-mediated functions. The history of klotho is linked 
to a paper published in 1997 where Makoto Kuro-o described 
a transgenic mouse with age-related disorders caused by a 
transgene insertion mutation. Homozygous mice showed 
phenotypes similar to those of patients with premature aging 
syndromes: arteriosclerosis, osteoporosis, age-related skin 
changes, and ectopic calci ications, as well as short lifespan 
and infertility. The authors named this mutant Klotho in 
honor of one of the Fates, the Greek goddess who weaves the 
thread of life [4]. 

The Klotho family, named Kl, has three members, 
including α-Kl, β-Kl and γ-Kl. In general, the word “Klotho” 
refers to α-Kl when no subfamily is mentioned [3,5]. The 
human Kl gene (α-Klotho) is located in chromosome q13.1 
and consists of ive exons lanked by PDS5B and STARD13 
[6]. The promoter region is rich in Sp1 and cooperates with 
Oct-1 [7] enhancing gene expression. There are ive exons 
covering 50 kb on chromosome 13q12 [8], and four introns 
in the KL coding region transcribing the mRNA of 3036, 3042, 
and 3042 nucleotides respectively. The Klotho gene has a 
functional variant, known as KL-VS (V allele), which contains 
three coding variants, two amino acid substitutions (F352V, 
C370S), and one silent mutation (K385K). Homozygosity for 
the V allele is associated, in humans, with reduced longevity 
and both heterozygotes and homozygotes have an increased 
risk of early-onset coronary artery disease [1,2,8]. 

The α-Klotho has two alternatively spliced variants, a 
membrane form of 1012 amino acids and a secreted form 
of 549 amino acids. The latter, more abundant, lacks the 
second internal repeat, the transmembrane domain and 
the intracellular domain of the membrane form. It has 
1012 amino acids with a very short intracellular C-terminal 
sequence (10 amino acids), a transmembrane domain, and, 
for the most part, an extracellular portion [1]. Extracellularly, 
comprises two soluble domains: in its proximal part, KL1, and 
in its terminal part, KL2, which can be cleaved by membrane 
proteases (ADAM10 and ADAM17). Klotho can be released to 
blood, urine, and cerebrospinal luid as a soluble form (named 
α-Klotho or s-Klotho). When released into the blood, s-Klotho 
acts as an endocrine hormone. Subsequently, s-Klotho can 
be generated directly through alternative RNA splicing or 
proteolytic cleavage [5].

There are also soluble forms of Kl (s-Kl) that can be 
produced not only by shedding the extracellular domain 
of Kl through the proteolytic activities of disintegrin and 
metalloproteinases 10 and 17 (ADAM10/17). However, it can 
also be formed by alternative splicing of the Kl gene. 

The main source of Klotho is the kidney [9,10] but it is 
also expressed in the parathyroid glands as well as in the 
pancreatic β cells, blood vessels, ovary, testis, inner ear, skin 
peripheral blood circulating cells and central nervous system 
[11,12]. As stated above, the soluble forms are mainly found in 
body secretions such as blood, urine, and Cerebrospinal Fluid 
(CSF) and have endocrine, paracrine, or autocrine roles that 
are independent of growth factors [13]. 

Klotho-regulated pathways

KLOTHO protein is a beta-glucosidase involved in the 
regulation of a wide variety of physiological functions 
modulated by autacoids such as ibroblast growth factor-23 
(FGF23; phosphate, calcium and vitamin D excretion), 
transforming growth factor beta (TGF-β; senescence, 
ibrosis), insulin growth factor (IFG-1), Wnt/-catenin (tissue 
ibrosis), nuclear factor (erythroid-derived 2)-like 2 (Nrf2; 

antioxidation and autophagy) and nuclear factor kappa B (NF-
κB; free radicals and oxidative stress) (Figure 1).

The extracellular domain of the transmembrane form of 
Klotho acts as a co-receptor of the FGF-23 receptor (FGFR). 
By working as, a co-receptor the af inity binding of FGF23 to 
FGFR1c, FGFR 3c as well as FGFR 4c can increase up to 20-fold 
[11,13-16]. FGF23 is synthesized mainly in the bone tissue [11] 
and participates in the regulation of phosphate and vitamin 
D balance [2,3,5,14,17]. Upon activation of FGFR, a signaling 
pathway is initiated through PI3K/Akt, phospholipase C γ 
(PLCγ), and Ras/MAPK/ERK [13,18,19]. 

Another pathway related to Klotho is the TGF-β signaling 
pathway which appears to be inhibited by this protein. TGF-β 
is a pleiotropic cytokine that binds to a receptor comprised 
of type 2 TGF-β receptor (TR2), and TβR1. TGF-β is involved 
in the development of cellular senescence, stem cell decline, 
immune impairment, and other alterations associated with 
aging [20-23].

IGF-I pathways have also been linked to Klotho. s-Klotho, 
by inhibiting IGF-I signaling and that of its receptor (IGF-
IR) [24], contributes to the amelioration of aging [25]. IGF-1 
is a growth factor with effects on development, growth, cell 
differentiation, and tissue repair [26]. Insulin/IGF-1 receptors 
are transmembrane tyrosine kinases that, upon ligand 
binding, initiate the signaling process by phosphorylation 
and protein binding of the insulin receptor substrate (IRS) 
[27]. Activation of s-Klotho connects antioxidant mechanisms 
through FoxO forkhead (FOXO) transcription factors. Blockade 
of insulin/IGF-1 pathways unlocks inhibition of these 
transcription factors, leading to their nuclear migration and 
to the expression of antioxidant enzymes, such as manganese 
superoxide dismutase [28].

Klotho blocks Wnt, a family of lipoproteins secreted upon 
Klotho’s binding to several ligands which include Wnt1, 
Wnt3, Wnt4, and Wnt5a [29-31]. Klotho regulates antioxidant 
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pathways via the nuclear factor (erythroid-derived 2)-like 2 
(Nfr2). This factor regulates the expression of genes involved 
in the protection against oxidative stress and in lammation, 
in addition to vital actions such as mitochondrial function 
preservation, protein homeostasis, autophagy regulation, and 
damaged protein elimination [32-34]. 

Additionally, Klotho blocks the signaling pathway of 
NFκB. This transcription factor is involved in the immune and 
in lammatory response as well as other cell-critical processes, 
such as anti-apoptotic signaling, proliferation, and oxidative 
stress [35-37]. Klotho carries out this modulation directly, 
by preventing the translocation of the NF-κB subunit Rel A 
(p65) from the cytoplasm to the nucleus, or by preventing the 
degradation of the IκB protein [38]. Thus, it has been shown 
that α-Klotho is able to decrease NF-κB activation and to 
reduce the expression of IL-8, MCP-1, RANTES, and IL-6 as well 
as the expression of adhesion molecules such as intercellular 
adhesion molecule 1 (ICAM-1) and vascular cell adhesion 
molecule 1 (VCAM-1) [39,40]. Moreover, the existing negative 
feedback between NFκB activation and the expression of 
Klotho should not be overlooked. Indeed, activated NFκB is 
capable of inhibiting Klotho, and under conditions of high 
in lammation, the expression and activation of NF B is higher 
than that of Klotho leading to the suppression of the latter 
[41,42].

Klotho and pathophysiology

Klotho and KL play important roles in aging-related 
disorders, such as chronic kidney disease [43], cardiovascular 

diseases [44], diabetes [45], cancer [46], and neurological 
disorders. A higher circulating level of Klotho is associated 
with a lower risk of metabolic syndrome, renal disease, and 
cardiovascular disease [5], and its overexpression results in 
increased survival [1]. On the other hand, the serum level of 
this protein decreases with age and is inversely related to 
aging phenotypes and other conditions such as renal disease, 
vascular calci ication, cardiac hypertrophy, hypertension, 
ibrosis, osteopenia, pulmonary disease, neurodegeneration 

and, ultimately, to a higher mortality rate and shortened 
longevity [1]. In animal models of disease, a lack of Klotho 
in the brain has been associated with cognitive impairment, 
premature death, and synaptic loss [47]. Speci ically, the 
human KLOTHO protein has 86% amino acids in common with 
murine KLOTHO. Mice de icient in Klotho develop cognitive 
de icits such as memory impairment and hippocampal 
damage.

Pharmacological regulation of Klotho levels

Several transcription factors are involved in the regulation 
of Klotho expression: activators, such as PAX4 [48], Sp1 
and Oct-1, vitamin D, PPAR-γ [49,50], and inhibitors like 
FGF23 [51,52], epidermal growth factor, erythropoietin, the 
ras homologous gene of family A, AP-2, E-box, and NF-κB 
[1,53]. By operating on these regulatory factors it is feasible 
to pharmacologically modulate Klotho and thus achieve 
therapeutic bene its from this protein. We will brie ly describe 
some of the drugs capable of regulating the Kl gene: 

Hormone-based drug therapy: This has a huge potential 
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Figure 1: Comprehensive fi gure depicting the known hormone-, antioxidant- and antiinfl ammatory-based pharmacological pathways that act on the 
regulation of Klotho levels and the associated downstream signaling pathways with the fi nal eff ects.
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and can be considered a modulator of Kl expression and 
therefore should be regarded as a irst-level strategy to 
take advantage of Klotho’s properties. Kl expression can be 
modulated by numerous hormones (both at the level of the 
membrane and the secreted forms). For example, testosterone 
[54], upregulates mRNA and Kl protein levels in NRK-52E 
cells. Positive regulation of nuclear androgen receptor 
(AR) upregulates Kl levels. Flutamide, an AR antagonist 
drug, attenuates testosterone-modulated Kl expression. 
17β-estradiol activates Kl in the hippocampus [55], while 
triiodothyronine increases the expression of the membrane, 
but not the secreted, form of Kl in 3T3-L1 adipocytes 
[56]. Finally, insulin enhances s-Kl production through a 
phosphoinositide 3-kinase (PI3K)-dependent pathway in 
which the ADAM 10/17 protease is involved [57].

The binding of the pleiotropic steroid hormone vitamin D 
to its superfamily of nuclear hormone receptor transcriptional 
regulators is involved in the positive regulation of Kl [58-
60]. Vitamin D analogues including calcitriol, alfacalcidol, 
doxercalciferol, luorocalcidol, and maxacalcitol, could have 
inducing effects on Kl gene expression. In this sense, calcitriol 
or its analog, paricalcitol, has been shown to elevate serum 
Kl levels in mice, independently of parathyroid hormone and 
calcium level alterations [58].

Inhibitors of the renin-angiotensin system: Long-term 
administration of Ang-II reduces the renal level expression 
of Kl mRNA and proteins [61] by a mechanism involving 
transforming growth factor-β1 (TGF-β1)- p38 MAPK-P53-
SP1 and resulting in the binding of P53/SP1 to the Kl gene 
promoter inhibiting its transcription [61]. Thus, angiotensin 
receptor antagonist drugs, such as losartan and valsartan, and 
ACE inhibitors, such as enalapril and fosinopril, could increase 
Kl levels [62]

Anti-in lammatory agents: Anti-in lammatory drugs, 
steroidal and non-steroidal, can be effective in maintaining or 
even elevating Kl expression. Some in lammatory cytokines 
such as tumor necrosis factor α (TNFα) or the weak inducer 
of TNF-like apoptosis (TWEAK) reduce Kl expression [41]. 
The effect of TNFα appears to be mediated by a nuclear factor 
kappa (NF-κB) -dependent mechanism. Whereas TWEAK 
inhibits Kl gene expression, by inducing RelA binding to the Kl 
promoter, causing its deacetylation [41].

Antioxidants: In conditions where oxidative stress is 
evident (elevations of 8-isoprostane or hydrogen peroxide), Kl 
expression is inhibited [63]. In these cases, supplementation 
with antioxidants could be considered as another therapeutic 
approach. Vitamin C, vitamin E, N-acetylcysteine, melatonin, 
lipoic acid, and polyphenols such as curcumin, could lead 
to an increase in Kl [64,65]. Interestingly, the antioxidant 
properties of Klotho have been unintentionally used for ages. 
Indeed, natural alkaloids, organic compounds that contain 
nitrogen and constitute one of the most important effective 

ingredients in Chinese traditional herbal medicine, upregulate 
the expression of Klotho as shown by Rui, et al. [66]. These 
authors propose that the protective role of the herbs would 
be mediated by antioxidant mechanisms, mitochondrial 
damage improvement, cell death reduction, and in lammation 
inhibition. FOR INSTANCE, ONE OF THESE ALKALOIDS, 
neferine, a bisbenzylisoquinoline alkaloid, suppresses the 
activation of NF-κB and increases the expression of Klotho 
[67]. 

The 3-hydroxy-3 methylglutaryl coenzyme A (HMG-
CoA) reductase inhibitors such as statins (e.g. atorvastatin, 
rosuvastatin, and pitavastatin) also have anti-in lammatory 
and antioxidant effects. Statins promote Kl gene expression by 
activation of the FOXO signaling pathway and inhibition of the 
Rho/Rho-kinase pathway [32,33], or by modulating Nrf2 and 
Nrf2/HO-1 [68]. Pravastatin, in a dose-dependent manner, 
markedly increases Klotho expression, which is responsible 
for the bene its of statin therapy on endothelial dysfunction 
and atherosclerosis [5].

Finally, other mechanisms have been suggested. For 
instance, a regulatory role of peroxisome proliferator-
activated receptor gamma-activated receptor-γ (PPAR-γ) 
on Kl has been proposed [69]. Thus, PPAR-γ agonists 
or thiazolidinediones such as ciglitazone, troglitazone, 
pioglitazone and rosiglitazone, could elevate Kl levels [49]. 
Another proposal has been the use of the antibiotic rapamycin, 
which is an mTOR inhibitor that increases Klotho expression. 
Certainly, a delay in the onset of age-related diseases has been 
described after rapamycin treatment [70].

Drugs capable of controlling epigenetic modi ications 
such as those modifying Histone Acetyltransferase (HAT) and 
Histone Deacetylase (HDAC) enzymes should not be overlooked 
in this list. Indeed, the HDAC inhibitor trichostatin-A induces a 
positive regulation of Kl [71] while methylation of the Kl gene 
promoter silences its gene expression [71]. Therefore, DNA 
methyltransferase inhibitors, such as azacitidine, decitabine, 
and zebularine, could have therapeutic potential as a Kl 
upregulation approach.

Klotho-induced neuroprotection

The CNS is the second most abundant organ expressing 
Kl after the kidneys [72]. Both Kl mRNA and protein are 
present in the brain parenchyma, colocalizing in neurons and 
oligodendrocytes. The highest amount of brain Kl was detected 
in the choroid plexus and is expressed by ependymal cells. Kl 
can be found as well in the cortex, cerebellum, hippocampus, 
striatum, substantia nigra, medulla, olfactory bulb, and 
different limbic areas, such as the thalamus, hypothalamus, 
and nuclei of the amygdala [73]. As for intracellular 
distribution, Kl has been detected in the soma and dendrites 
of hippocampal neurons. The roles of Kl in the nervous system 
are not fully understood but Kl may play an important role in 
neuroprotection [74,75]. Overall, Kl is necessary for healthy 
and normal brain function throughout life. 
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So far, the main conclusion obtained from the irst 
published work in mice homozygous for a hypomorphic 
Klotho gene (kl/KL) was that the Klotho protein has anti-aging 
properties. Klotho may be part of the neuronal degeneration 
process [5] and is involved in the regulation of brain aging. 
This is suggested by the impaired cognition and abnormal 
brain pathology observed in Klotho mutant mice [76] and by 
the analysis of the genetic pro ile of aging changes in the white 
matter of the rhesus monkey brain [77]. In fact, a correlation 
between low Klotho levels and increased risk of stroke has 
been described. Klotho may also activate antiaging signaling 
pathways such as antioxidative and anti-in lammatory 
pathways.

A recent study showed a positive correlation between CSF 
Klotho levels with the stage of the disease. However, only 
one study has determined CSF Klotho levels in AD patients. 
This study showed a similar decrease in Klotho compared 
with controls [47]. How Klotho is related to AD progression 
in the human brain remains unknown, but studies in mice 
suggest that Klotho modulates N-methyl-d-aspartate receptor 
function and activates microglial cells to promote cognitive 
function [47].

Klotho depletion is associated with nerve damage and 
brain dysfunction [12,75], with synaptic destruction, axonal 
transport impairment, nerve iber impairment, and nerve 
degeneration [4,76]. Mice lacking the KL gene have been 
shown to have learning and remembering problems, possibly 
due to reduced hippocampal synapses, axonal transport 
disorders, and hippocampal nerve damage [76]. Kl has also 
been shown to improve long-term potentiation (LTP) by 
inducing synaptic NMDA receptors and related genes such as 
FOS in the hippocampus and cortex, leading to learning and 
memory improvement [78].

Kl can bind to soluble amyloid precursor protein (APPsβ) 
and thus, might prevent the formation of β-amyloid structures, 
protecting the CNS against amyloid toxicity [79] . Semba et al. 
showed that CSF Kl levels were lower in AD patients than in 
healthy individuals, and higher in younger than in older people 
[80]. Existing studies with amyloidogenic mouse models have 
shown that overexpression of Klotho protein in the brain 
can ameliorate AD-like pathology and cognitive impairment 
as well as reverse neuronal damage. It is also known that 
Klotho can ameliorate Aβ accumulation in these murine 
models by regulating Aβ-related transporters and microglia 
transformation. In the early stages of AD, degradation 
pathways, i.e., autophagy, the Ubiquitin-Proteasome System 
(UPS), and Chaperone-Mediated Autophagy (CMA) are 
impaired. More importantly, the accumulation of β amyloid 
causes dysfunction in the lysosome and the Lysosomal 
Autophagy Pathway (LAP), leading to neuronal loss [81]. 
Recent studies have shown that Klotho expression and 
autophagy are related to the anatomical pathology of AD. 
Overexpression of Klotho can promote LAP in AD through 
activation of the beclin1 pathway [82].

Klotho displays anti-in lammatory actions under 
pathological conditions [83]. This is likely to take place by 
the blockade of the signaling pathway of NFκB. Human CNS 
contains a highly active NF-κB signaling system with deep 
implications for neurological health [84,85]. NF-κB regulates 
a family of microRNAs (miRNAs) which includes miRNA-9, 
miRNA-30b, miRNA-34a, miRNA-146a, and miRNA-155. 
These miRNAs, in addition to having a general role in 
immunity, in lammation, and gene function in the CNS [86-
88], are involved in the neurodegenerative pathogenesis of 
AD. Indeed, these miRNAs have been found to be signi icantly 
upregulated in this condition [89,90]. In line with these 
indings, overexpression of α-Klotho in the mouse choroid 

plexus ameliorates behavioral shortage and increases the 
number of living neurons upon brain hypoperfusion. All 
this is accompanied by a decrease in the production of 
proin lammatory cytokines and activation of astrocytes and 
microglia [43]. Oxidative stress generates mitochondrial 
dysfunction, impairs DNA repair, and causes cell damage. All 
the latter are part of the pathogenesis of neurodegenerative 
diseases, such as AD [91]. Thus, Klotho activates Nrf2 in a way 
that protects from renal, cardiovascular, and neurological 
disease [92,93].

Other pathways, such as the Insulin/IGF pathway, have 
been related to Klotho in the CNS. Insulin/IGF signaling 
promotes olfactory associative learning [94,95] and is 
involved in CNS plasticity in the hypothalamus, hippocampus, 
olfactory bulb, and other brain areas [27,96]. Alterations in 
the insulin signaling cascade underlie cognitive impairment 
and the development of several neurodegenerative diseases. 
Blockade of IGF-I receptors has been associated with cerebral 
amyloidosis and accumulation of hyperphosphorylated 
tau protein. Also, cognitive impairment and other 
neuropathological changes are typical of AD [97]. In addition, 
the blockade of IGF-I signaling induced by s-Klotho has been 
shown to increase resistance to oxidative stress, thereby 
improving survival rates [28]. 

Another target pathway is Wnt. Wnt is expressed in 
various CNS territories such as radial glia, oligodendrocytes, 
microglia, astrocytes, and neurons [98-100] where it 
regulates neuronal patterning, stem cell proliferation, 
and neurogenesis [101-103]. Wnt, by binding to the so-
called Frizzled receptors, engages in systemic physiological 
processes such as cell differentiation, polarity, and migration 
[101,104,105]. Wnt also protects against β-amyloid peptide 
(Aβ) neurotoxicity. This seems to be due to the role Wnt takes 
in glycogen synthase kinase-3 β (GSK-3 β)-catalyzed Tau 
phosphorylation. A hyperactivation of Wnt is associated with 
the generation of embryonic degenerative abnormalities and 
tissue ibrosis [29,105-107]. Wnt dysfunction may be involved 
in aging and has been associated with memory impairment 
[98,99,101,103,105-107] and in learning and memory 
processes [106-108]. In Klotho-de icient mice, excess Wnt 
activation promotes cellular senescence and has a negative 
impact on stem cell survival [109].
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With regard to the relationship between FGF23 and Klotho, 
elevated levels of FGF23 are associated with Klotho de iciency 
[4]. Thus, the production of FGF23 is inversely related to the 
serum concentration of Klotho. This has been con irmed in the 
CNS as well. Indeed, a higher serum FGF23 concentration is 
associated with an increased risk of incident dementia and AD 
[110,111], perhaps due to the existence of cardiovascular risk 
factors or vascular evidence of brain injury or to an FGF23-
dependent reduction in vitamin D levels, which is known to be 
a predictor of cognitive impairment in adults.

Finally, it should be emphasized that there is a serious 
lack of human studies focused on Klotho’s expression and 
functionality in the central nervous system. This is striking 
and therefore it is urgent to address this research, the results 
of which may be more than promising.

Conclusion
In conclusion, our understanding of Klotho and its 

function related to neurodegenerative disease progression 
is far from complete. However, it appears clear that Klotho 
offers protective roles against nervous system damage by 
interfering with numerous pathways. At present, one of the 
main limitations we still suffer from is the lack of speci ic 
klotho-modulating drugs. So, the effects on klotho-mediated 
protection of existing drugs should be further investigated.
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